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Abstract

Background: Genetic and lifestyle factors have considerable effects on obesity and related diseases, yet their
effects in a clinical cohort are unknown. This study in a patient biobank examined associations of a BMI polygenic
risk score (PRS), and its interactions with lifestyle risk factors, with clinically measured BMI and clinical phenotypes.

Methods: The Mass General Brigham (MGB) Biobank is a hospital-based cohort with electronic health record,
genetic, and lifestyle data. A PRS for obesity was generated using 97 genetic variants for BMI. An obesity lifestyle
risk index using survey responses to obesogenic lifestyle risk factors (alcohol, education, exercise, sleep, smoking,
and shift work) was used to dichotomize the cohort into high and low obesogenic index based on the population
median. Height and weight were measured at a clinical visit. Multivariable linear cross-sectional associations of the
PRS with BMI and interactions with the obesity lifestyle risk index were conducted. In phenome-wide association
analyses (PheWAS), similar logistic models were conducted for 675 disease outcomes derived from billing codes.

Results: Thirty-three thousand five hundred eleven patients were analyzed (53.1% female; age 60.0 years; BMI 28.3
kg/m2), of which 17,040 completed the lifestyle survey (57.5% female; age: 60.2; BMI: 28.1 (6.2) kg/m2). Each
standard deviation increment in the PRS was associated with 0.83 kg/m2 unit increase in BMI (95% confidence
interval (CI) =0.76, 0.90). There was an interaction between the obesity PRS and obesity lifestyle risk index on BMI.
The difference in BMI between those with a high and low obesogenic index was 3.18 kg/m2 in patients in the
highest decile of PRS, whereas that difference was only 1.55 kg/m2 in patients in the lowest decile of PRS. In
PheWAS, the obesity PRS was associated with 40 diseases spanning endocrine/metabolic, circulatory, and 8 other
disease groups. No interactions were evident between the PRS and the index on disease outcomes.

Conclusions: In this hospital-based clinical biobank, obesity risk conferred by common genetic variants was
associated with elevated BMI and this risk was attenuated by a healthier patient lifestyle. Continued consideration
of the role of lifestyle in the context of genetic predisposition in healthcare settings is necessary to quantify the
extent to which modifiable lifestyle risk factors may moderate genetic predisposition and inform clinical action to
achieve personalized medicine.
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Background
Precision medicine aims to prevent, treat, and manage
obesity and related diseases through targeted therapies
[1]. Personalized approaches are expected to yield more
effective therapies and efficient use of existing resources
[1]. The initial drive toward precision medicine for
obesity has been through quantifying disease risk based
on genetic profiles and the simultaneous understanding
of both genetic and lifestyle risk largely in healthy,
population-based cohorts. However, for the adoption of
personalized medicine into healthcare practice, examin-
ing the transferability of obesity genetic findings in a
healthcare setting is essential to inform clinical action.
Both genetic and lifestyle factors have considerable

effects on obesity and related diseases. The first
genome-wide association study (GWAS) identified asso-
ciations of the obesity-susceptibility locus, FTO, with a
0.39-kg/m2 unit increase in BMI per risk allele [2, 3].
Subsequently, 97, and more recently 751, single nucleo-
tide polymorphisms (SNPs) significant in GWAS com-
bined as a weighted polygenic risk score (PRS) explained
2.2% and ~ 6.0% of BMI variance, respectively [4, 5].
Genetic predisposition to obesity may be attenuated by
adhering to a healthy lifestyle [6–9]. For example, phys-
ical activity, adequate sleep duration, and consumption
of a healthy diet have been observed to diminish obesity
genetic risk conferred by FTO and the 97 SNPs for BMI
[10]. Furthermore, twin studies also support the role of
an obesogenic environment on the phenotypic effects of
obesity-related genes [11]. Based on these findings from
general community settings of population-based cohorts,
emphasizing a healthy lifestyle among genetically at-risk
individuals may be clinically impactful, but this approach
has not been tested in patient biobanks. Genetic suscep-
tibility to obesity has also been related to other common
metabolic and non-metabolic diseases, including type 2
diabetes and obstructive sleep apnea, illustrating plei-
otropy and a potential mediating role of obesity as a risk
factor [2, 12, 13]. Elucidating the relationship between
the genetics of obesity and other diseases may help to
prioritize diseases that will inevitably increase in preva-
lence because of the obesity epidemic.
Electronic health record (EHR) clinical biobanks offer

the advantage of examining patients with a range of co-
morbid conditions and remain underutilized for obesity
research [14]. EHR biobanks are rapidly growing because
they enable quick patient enrollment, cost-effective re-
search, and robust phenotype ascertainment at scale.
Unique to the Mass General Brigham (MGB) Biobank is

the inclusion of lifestyle surveys [15]. The bridging of
clinical information to biological specimens and health
surveys [16] offers a resource for the simultaneous con-
sideration of obesity genetic factors and lifestyle risk fac-
tors. In addition, the implementation of EHR biobanks
across academic medical systems provides patient co-
horts enriched for disease phenotypes including those
that have an overall low prevalence in traditional
population-based cohorts [17]. Systematically examining
the relationships between obesity genetics and hundreds
of clinical phenotypes through phenome-wide scans can
reveal links with obesity that have been previously un-
known due to limited statistical power [18–21].
In the present study, we first examined the transfer-

ability of obesity genetic findings, including (1) associa-
tions with BMI and (2) interactions with lifestyle risk
factors in a large patient biobank in aggregate and then
separately in subgroups of patients with the lowest and
highest comorbidity burden to determine potential het-
erogeneity of effects across patients. Then, we conducted
a hypothesis-free phenome-wide scan to catalog obesity-
disease links and to identify disease outcomes where a
favorable lifestyle may attenuate risk conferred by a
genetic predisposition to obesity.

Methods
Mass General Brigham Biobank
The Mass General Brigham (MGB) Biobank (formerly
Partners Biobank) is a hospital-based cohort study from
the MGB healthcare network in Boston, MA with elec-
tronic health record (EHR), genetic, and lifestyle data [15,
22, 23]. The MGB Biobank includes data obtained from
patients in several community-based primary care facilities
and specialty tertiary care centers in Boston, MA [15, 24].
The MGB network provides a wide range of healthcare
services. Biobank patients are recruited from inpatient
stays, emergency department settings, outpatient visits,
and electronically through a secure online portal for pa-
tients. Recruitment and consent materials are fully trans-
lated in Spanish to promote patient inclusion. The
systematic enrollment of patients across the MGB net-
work and the active inclusion of patients from diverse
backgrounds contribute to a Biobank reflective of the
overall demographic of the population receiving care
within the MGB network. Recruitment for the Biobank
launched in 2009 and is ongoing through both in-person
recruitment at participating clinics and electronically
through the patient portal. The recruitment strategy has
been described previously [15]. All recruited patients

Dashti et al. BMC Medicine            (2022) 20:5 Page 2 of 12



provided written consent upon enrollment. At the time of
the analysis (03/2021), a total of 123,844 patients have
consented. The present study protocol was approved by
the MGB Institutional Review Board (#2009P002312,
#2018P002276).

Obesity polygenic risk score
A total of 43,446 patients have been genotyped with the
Illumina Multi-Ethnic Genotyping Array and the Infi-
nium Global Screening Array. The genetic data were
harmonized, and quality controlled with a three-step
protocol, including two stages of genetic variant removal
and an intermediate stage of sample exclusion [25, 26].
The exclusion criteria for variants were (1) missing call
rate ≥ 0.05, (2) minor allele frequency < 0.001, and (3)
deviation from Hardy-Weinberg equilibrium (P < 1×
10−6). The exclusion criteria for samples were (1) sex
discordances between the reported and genetically pre-
dicted sex, (2) missing call rates per sample ≥0.02, and
(3) population structure showing more than four stand-
ard deviations within the distribution of the study popu-
lation, according to the first four principal
components (PCs). Phasing was performed with SHA-
PEIT2 [27] and imputations were performed with the
Haplotype Reference Consortium Panel [28] using the
Michigan Imputation Server [29]. Patient ancestry was
determined using TRACE [30] with the Human Genome
Diversity Project (HGDP) [31] as the reference panel.
Principal component analysis outliers were determined
by using a principal component analysis projection of
the study samples onto the HGDP reference samples. To
limit genetic heterogeneity in the present study, partici-
pants of non-European ancestry, which comprise only ~
10% of the Biobank, were excluded from the analysis. To
correct for population stratification, PCs were computed
using TRACE [30] in genetically European participants.
Among the participants with European ancestry, sample
relatedness was inferred using KING [32], and subse-
quently, one sample from each related pair (kinship >
0.125) was randomly excluded.
A polygenic risk score (PRS) for obesity was generated

for each patient based on 97 previously identified SNPs
for BMI at the genome-wide significance level (P < 5×
10− 8) [4]. All SNPs had a minor allele frequency > 1%
and an imputation quality (minimac rsq) ≥0.80 (Table
S1). For each patient, the number of risk alleles weighted
by the respective allelic effect sizes (β-coefficients) re-
ported in the original GWAS meta-analysis [4] was
summed. The score was subsequently scaled to allow
interpretation of the effects as a per-1 BMI-increasing al-
lele in the PRS (division by twice the sum of the β-
coefficients and multiplication by twice the square of the
SNP count representing the maximum number of risk
alleles). The score was also standardized to have a mean

of 0 and a standard deviation (SD) of 1 to allow com-
parison of the effects as per-1 SD with the obesity life-
style risk index.

Obesity lifestyle risk index
Following enrollment, Biobank participants were invited
to complete an optional Health Information Question-
naire composed of lifestyle and family history questions
(38.3% of Biobank participants responded [24]). For the
present study, questions on 6 obesogenic lifestyle risk
factors were considered to generate an obesity lifestyle
risk index, including alcohol intake, education (as a
proxy of socioeconomic status [33]), exercise, sleep
habits, smoking, and shift work.
Specifically, alcohol intake was determined in response

to the question, “During the past year how many alco-
holic drinks (glass/bottle/can of beer; 4 oz glass of wine;
drink or shot of liquor) did you usually drink in a typical
week?”. Response options included none, or less than 1
per month, 1–3 per month, 1 per week, 2–4 per week,
5–6 per week, 1–2 per day, 3–4 per day, 5–6 per day,
and more than 6 per day. Education level was reported
in response to the question, “What is the highest grade
in school that you finished?”. Response options included
grade school (1–4 years), grade school (5–8 years), some
high school (9–11 years), higher school diploma or GED
(finished high school), some college, 2-year college or
vocational school, 4-year college, and masters, doctoral
or professional degree. Exercise was assessed with the
question, “During the past year, what was your average
time spent per week at each of the following recreational
activities [bicycling; higher intensity exercise; jogging;
lap swimming; lower intensity exercise; running; tennis,
squash, or racquetball; walking or hiking (including to/
from/for work)?”. Responses were aggregated to calcu-
late total moderate to high-intensity exercise (excludes
walking/hiking) in hour per week. Sleep habits were
assessed with the questions, “In considering your longest
sleep period, what time do you usually go to bed on
weekdays or work or school days [or weekends or days
off]?” and “In considering your longest sleep period,
what time do you usually wake up on weekdays or work
or school days [or weekends or days off]?”. Responses
were in half-hour increments. Improbable reported bed
and wake times were revised, consistent with previous
analyses [24]. Sleep duration was then computed from
bed and wake times with 5/7 weighting for weekdays
and 2/7 for weekends. Smoking was assessed with the
questions, “Have you smoked at least 100 cigarettes in
your lifetime?”. Response options included, yes, currently
smoke, yes, smoked in past, but quit, and no, have not
smoked more than 100 cigarettes. Lastly, shift work was
assessed with the question, “Which of the following best
describes your usual work schedule?”. Response options
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included afternoon shift, night shift, irregular shift, rotat-
ing shift, split shift, and no shift (unemployed).
An obesity lifestyle risk index was constructed by

aggregating exposure to the 6 obesogenic lifestyle risk
factors: excessive or limited alcohol intake (more or less
than 1 to 2 drinks per day [34, 35]), education level less
than masters, doctoral or professional degree [36], phys-
ical inactivity (< 150 min of moderate- or high-intensity
exercise per week [37]), inadequate sleep duration (< 8 h
or ≥10 h per night [24]), former smoking (associated
with higher odds of obesity compared to current and
never smoking [38]), and night shift work [39]. To
account for unequal effects of obesogenic lifestyle risk
factors on obesity, the index was weighted to reflect the
magnitude of the association of each trait with obesity,
as previously conducted [40]. The weighting (effect sizes
(β-coefficients)) of each trait was determined from an in-
dependent subset of MGB Biobank participants of self-
reported European ancestry (n =30,045) that were other-
wise excluded from the analysis because of the absence
of genetic data (Additional files 1: Fig. S1, 2: Table S1).
For each trait, the lowest risk category was assigned the
reference group: moderate alcohol intake (1–2 drinks
per day), highest education level (masters, doctoral or
professional degree), recommended physical activity dur-
ation (≥150 min of moderate- or high-intensity exercise
per week [37]), adequate sleep duration (≥8 and < 10 h
per night), never smoking, and day shift work. Effect es-
timates were derived from a multivariable linear regres-
sion model for BMI including all 6 traits and adjusted
for age and sex. Cross-trait correlations (r2) across the 6
traits ranged from − 0.22 to 0.15. For each participant,
the respective effect estimates for all present obesogenic
lifestyle trait were summed. The obesity lifestyle risk
index was subsequently standardized to have a mean of
0 and a SD of 1 to allow interpretation of the effects as
per-1 SD. A higher scaled index reflects more obeso-
genic behaviors.

Body mass index, obesity status, and other disease
outcomes
Body mass index (BMI) was calculated from participants’
measured height and weight by clinical staff during a
clinical visit. For this analysis, the BMI closest to the
date of Biobank enrollment was used.
Cases for obesity and other disease outcomes were de-

termined from billing codes based on the International
Classification of Diseases (ICD)-9/-10 diagnostic codes
derived from all available EHR [15]. Both ICD-9 and
ICD-10 were mapped to up to 1857 phenome-wide asso-
ciation study (PheWAS) codes (i.e., clinical phenotypes
“phecodes”) based on clinical similarit y[41, 42]. For the
obesity phecode, 278.1, the ICD-9 diagnostic codes were
278, 793.91, V85.3, V85.30, V85.31, V85.32, V85.33,

V85.34, V85.54 and the ICD-10 diagnostic codes were
E66.0, E66.09, E66.1, E66.8, E66.9, R93.9, Z68.30, Z68.31,
Z68.32, Z68.33, Z68.34, Z68.54.
Same-day duplicated diagnoses and non-ICD-9/-10

codes were removed. To improve the positive predictive
values for disease outcomes [43, 44], participants with at
least 2 codes for any phecode were considered cases for
that respective phenotype, whereas participants with no
relevant code were considered controls. Relevant exclu-
sionary diseases are curated lists of related conditions
specific to each outcome (e.g., for Crohn’s disease, exclu-
sionary diseases included ulcerative colitis and other re-
lated gastrointestinal complaints) aimed at generating
robust control groups with limited case contamination
to increase statistical power for finding associations [42,
45] and are listed in the PheWAS Catalog [44]. Partici-
pants with only one diagnostic code for a disease cat-
egory or a code for any relevant exclusionary disease
category were excluded from the analysis for that disease
outcome. Thus, case-control sets for obesity phecode
and every other disease outcome were unique.

Statistical analysis
The analytical genetic sample included 33,511 unrelated
patients of European ancestry with high-quality genetic
data. First, we tested associations of the 97 SNPs for obes-
ity, first separately then combined in the obesity PRS, with
clinically measured BMI (primary outcome) in PLINK
[46] using linear regression models and an additive genetic
model adjusted for age, sex, genotyping array, and 5 PCs
of ancestry. Following that, we tested for replication of
the direction of effect of the 97 SNPs by performing a bi-
nomial test for the number of SNPs with the same direc-
tion of effect between the discovery study [4] and the
present study (MGB Biobank) association results.
Among 17,040 adults with lifestyle information, we ex-

amined associations between the weighted obesity life-
style risk index and BMI in linear regression models
adjusted for age at survey completion and sex. We tested
interactions between the obesity PRS and obesity life-
style risk index on BMI by adding an interaction term
between the PRS and the index and adding both the PRS
and the index as covariates in addition to genotyping
array and 5 PCs of ancestry in the multivariable linear
regression models. To further examine the interaction,
we dichotomized the obesity lifestyle risk index by the
population median, and ran stratified association ana-
lyses of the obesity PRS with BMI in the high (more
obesogenic behaviors) and low (less obesogenic behav-
iors) obesogenic subgroups.
In sensitivity analyses, we tested associations and inter-

actions stratified by Charlson Comorbidity Index to
examine the effect of comorbidity burden on study find-
ings (low morbidity (healthiest): 10-year survival >
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90.15%; high morbidity (sickest): 10-year survival=
0.009%). The Charlson Comorbidity Index, derived from
EHR data, is a validated index that combines the pres-
ence and severity of comorbidities with age to predict
the 10-year survival probability [47]. In addition, we
tested associations between the obesity PRS and the
obesity lifestyle risk index and its individual lifestyle fac-
tors; furthermore, we examined separate interactions
with individual SNPs (97 SNPs) and individual lifestyle
factors (6 factors) on BMI. Interactions with individual
SNPs and individual lifestyle factors were considered sig-
nificant at Bonferroni P value cut-offs accounting for the
total number of interaction tests.
Next, we conducted a PheWAS for the obesity PRS

with 675 other diseases using the PheWAS R package
[45]. In aggregate, the analyzed patients had a total of
25,184,047 ICD-9 and ICD-10 diagnostic codes corre-
sponding to 1,650,288 instances of phecodes (n =8349
for obesity phecode) with at least 2 distinct diagnostic
codes. Only diseases with at least 1% case prevalence
(i.e., n cases ≥ 335) were considered. We tested associa-
tions between the obesity PRS and each of 675 diseases
using logistic regression with adjustments for age, sex,
genotyping array, and 5 PCs of ancestry, then further ad-
justed for BMI. Associations were considered significant
at Bonferroni P value cut-offs accounting for the total
number of tested diseases (i.e., cross-sectional analysis P
value = 0.05/675 tested diseases with at least 1% case
prevalence =1.49 × 10−4). For significant PheWAS find-
ings, we conducted association tests comparing the high-
est (Q10) to lowest (Q1 - reference) decile of the obesity
PRS to demonstrate effect differences in patients in the
extreme tails of the risk distribution. We then systemat-
ically conducted interaction tests between the obesity
PRS and obesity lifestyle risk index for all disease out-
comes significantly associated with the obesity PRS in
the PheWAS by further adding an interaction term be-
tween the PRS and the index and adding both the PRS
and the index as covariates. Interactions were considered
significant at the Bonferroni threshold of P < 0.00125 ac-
counting for 40 disease outcomes (the number of signifi-
cant associations from the PheWAS). In sensitivity
analyses, we stratified PheWAS by Charlson Comorbid-
ity Index to examine the effect of morbidity on inter-
action findings. To partly account for potential changes
in lifestyle attributed to disease onset, in additional sen-
sitivity interaction analyses, we only included new diag-
noses made 1 year and later after Biobank enrollment.
All analyses were conducted using R (version 4.0.3; The

R Foundation for Statistical Computing, Vienna, Austria).

Results
A total of 33,511 adult patients of European ancestry
from the MGB Biobank were included in the genetic

analyses (Additional files 1: Fig. S1, 2: Table S1). Mean
age was 60.0 years (SD =16.9), 53.1% were female, and
mean BMI was 28.3 kg/m2 (SD =6.3). The median
(range) for the number of BMI-increasing alleles was 90
(64, 117). Of the 97 BMI loci, the FTO locus had the
strongest association with BMI (0.58 kg/m2 per effect al-
lele). In total, 91 signals showed a direction of associ-
ation concordant with the discovery GWAS (exact
binomial test P = 6.2 × 10−21) (Additional files 1: Fig.
S2A, 2: Table S2). The obesity PRS accounted for 2.9%
of the variance in BMI. On average, each SD increment
in the PRS was associated with 0.83 kg/m2 unit increase
in BMI (95% confidence interval (CI) = 0.76, 0.90), and
associations were observed among patients with the low-
est and highest morbidity based on the Charlson Co-
morbidity Index (Fig. 1A). The average effect per BMI-
increasing allele was 0.13 kg/m2 (95% CI =0.12, 0.14),
and patients in the highest decile of the score had an
average 2.87 kg/m2 higher BMI than patients in the low-
est decile (Additional file 1: Fig. S2).
Of the genetic sample, 17,040 participants (57.5% fe-

male; mean (SD) age: 60.2 (16.4) years, SD =16.4; BMI:
28.1 (6.2) kg/m2) completed the lifestyle survey (Add-
itional file 2: Table S1). The weighted obesity lifestyle
risk index composed of 6 obesogenic lifestyle risk factors
was associated with BMI (Additional file 1: Fig. S3) and
accounted for 6.6% of the variance in BMI. On average,
each SD increment in the index was associated with
1.49 kg/m2 unit increase in BMI (95% CI =1.39, 1.58),
and patients in the highest decile of the score had an
average 4.53 kg/m2 higher BMI than patients in the low-
est decile (Fig. 1B). Associations were observed among
patients with the lowest morbidity (1.53 kg/m2 per SD
(95% CI =1.34, 1.72)) and the highest morbidity (1.24 kg/
m2 per SD (95% CI =1.07, 1.41)). The obesity PRS was
not associated with the obesity lifestyle risk index or any
individual obesogenic lifestyle trait (all P > 0.05) (Add-
itional file 2: Table S3).
There was an interaction between the obesity PRS and

obesity lifestyle risk index on BMI (Pint = 7.1 × 10−6).
The association of a favorable lifestyle with lower BMI
was larger in patients with a high genetic predisposition
to obesity than in patients with a low genetic predispos-
ition. Specifically, among patients with the highest obes-
ity genetic risk (highest decile), the difference in BMI
between those with a high and low obesity lifestyle risk
index was 3.18 kg/m2, whereas among patients with the
lowest obesity genetic risk (lowest decile), the difference
in BMI between those with a high and low obesity life-
style risk index was only 1.55 kg/m2 (Fig. 2). Presented
differently, among patients with a high index (more obe-
sogenic behaviors), the obesity PRS effect per SD incre-
ment was 0.98 kg/m2 (95% confidence interval (CI) =
0.82, 1.13) kg/m2, whereas among patients with a low
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index (less obesogenic behaviors), the obesity PRS effect
per SD increment was only 0.59 kg/m2 (95% CI =0.47,
0.71) kg/m2 (Fig. 3A). The interaction between the PRS
and obesity lifestyle risk index on BMI was observed
among patients with the lowest (Pint = 0.02) and
the highest (Pint = 1.7 × 10−3) morbidity (Fig. 3B). In sen-
sitivity analyses, among the BMI loci, interactions were
strongest for FTO (Pint =2.4 × 10−4) and CADM2 (Pint =
1.4 × 10−3), and among the obesogenic lifestyle risk fac-
tors, individual interactions were evident for exercise
(Pint =1.8 × 10−4), alcohol intake (Pint =3.7 × 10−3), and
education (Pint =0.01) (Additional file 1: Fig. S4, S5).
PheWAS results for the obesity PRS and 675 disease

outcomes including 33,511 patients (Additional file 2:
Table S1) are presented in Additional file 2: Table S4.
Associations were evident for 40 disease outcomes span-
ning endocrine/metabolic (40.0% of total findings), cir-
culatory system (20.0%), and 8 other disease groups (Fig.
4). The 5 most significant associations were for morbid
obesity (PRS Q10 to Q1 odds ratio (OR) (95% CI): 2.88
(2.40, 3.45)), obesity (2.08 (1.83, 2.36)), bariatric surgery
(3.01 (2.19, 4.14)), type 2 diabetes (1.44 (1.25, 1.67)), and
abnormal weight gain (1.71 (1.38, 2.13)) (Fig. 5). On
average, each SD increment in the PRS was associated
with 1.26 (95% CI =1.22, 1.29) higher odds of obesity
diagnosis and was evident among patients with the low-
est and highest morbidity. Associations for some signals
were attenuated upon adjusting for BMI, suggesting dis-
ease risk is likely to be mediated through obesity (Add-
itional file 2: Table S4 ). No significant interactions were

Fig. 1 Associations of obesity genetic risk and obesity lifestyle risk index with clinically measured BMI with effect modification by comorbidity in
the Mass General Brigham Biobank. A Associations of the obesity PRS with clinically measured BMI in all 33,511 patients and associations stratified
by lowest and highest morbidity based on the Charlson Comorbidity Index (10-yr survival probability). Effect estimates are derived from a
multivariable linear regression model for BMI adjusted for age, sex, genotyping array, and 5 PCs of ancestry per SD of the PRS. B Association of
the obesity lifestyle risk index with clinically measured BMI in all 17,040 patients and associations stratified by lowest and highest morbidity. Effect
estimates are derived from a multivariable linear regression model for BMI adjusted for age and sex per SD of the obesity lifestyle risk index.
Abbreviations: polygenic risk score (PRS), principal components (PCs), standard deviation (SD)

Fig. 2 Average clinically measured BMI by lowest and highest decile
of obesity genetic risk and by obesity lifestyle risk index in an
electronic health record biobank (n =17,040). Pint value is for the
interaction term between the PRS and the obesity lifestyle risk index
(both continuous) on BMI in a multivariable linear regression model
adjusted for age, sex, genotyping array, and 5 PCs of ancestry adding
both the PRS and the index as covariates. The obesity lifestyle risk
index was standardized to have a mean of 0 and a standard deviation
of 1 then dichotomized by the median and presented as low (less
obesogenic behaviors) and high (more obesogenic behaviors).
Abbreviations: polygenic risk score (PRS), principal components (PCs)
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Fig. 3 Interaction between obesity genetic risk and obesity lifestyle risk index on clinically measured BMI in an electronic health record biobank
(n =17,040). A Interactions and associations of the obesity PRS with clinically measured BMI stratified by low and high obesity lifestyle risk index
(low vs. high obesogenic behaviors). Effect estimates (Beta) are derived from a multivariable linear regression model for BMI adjusted for age, sex,
genotyping array, and 5 PCs of ancestry per SD of the polygenic risk score. Pint value is for the interaction term between the PRS and the
obesity lifestyle risk index (both continuous) on BMI in the multivariable linear regression model with the PRS and the index added as covariates.
B Interaction and associations stratified by lowest and highest morbidity based on the Charlson Comorbidity Index (10-yr survival probability).
Effect estimates are derived from a multivariable linear regression model for BMI adjusted for age, sex, genotyping array, and 5 PCs of ancestry
per SD of the PRS. Pint value is for the interaction term between the PRS and the obesity lifestyle risk index (both continuous) on BMI in a
multivariable linear regression model with the PRS and the index added as covariates. Abbreviations: confidence interval (CI), polygenic risk score
(PRS), principal components (PCs), standard deviation (SD)
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Fig. 4 Phenome-wide association results for the obesity PRS (n =33,511). A Manhattan plot showing phenome-wide associations between the
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observed between the obesity PRS and obesity lifestyle
risk index on obesity diagnosis (phecode) (Pint =0.27) or
any other disease outcome identified in PheWAS (all Pint
> 0.03) (Fig. 5, Additional file 2: Table S5).

Discussion
In an analysis of adult patients in a clinical biobank, we
observed (1) that an obesity PRS was robustly associated
with clinically measured BMI; (2) an interaction between
an obesity PRS and an obesity lifestyle risk index, such
that among patients with a higher obesity genetic risk,
an obesogenic lifestyle exacerbated the genetic risk, re-
gardless of patient morbidity; (3) in PheWAS, that an
obesity PRS was associated with novel and known dis-
eases spanning multiple categories; and (4) that an obe-
sogenic lifestyle did not modify the associations between
an obesity PRS and disease outcomes derived from bill-
ing codes. Overall, the results of this study emphasize

the beneficial effect of reducing obesogenic behaviors
particularly among patients with high obesity genetic
risk, demonstrate the pleiotropic nature of obesity genet-
ics suggesting novel mechanistic links between obesity
and other diseases, and highlight limitations of lever-
aging clinical biobanks in advancing precision medicine
research.
First, we show strong transferability of genetic findings

for obesity from generally healthy population-based co-
horts to a patient-centered clinical EHR biobank. The
BMI SNPs had effects largely concordant with those
identified in population-based cohorts and the obesity
PRS explained variance in BMI comparable with that re-
ported in population-based cohorts (EHR = 2.9%;
population-based cohort = 2.1%) [4]. Among the 97 vari-
ants, the FTO locus showed the most prominent effect
on BMI [3]. The consistency of genetic effects was ob-
served despite fundamental cohort differences in BMI

Disease Group 

Disease                                                                    n Cases / n Controls                                            OR (95% CI) Q10 vs Q1 P value Pint value 

Morbid obesity 2977 / 21413 2.88 (2.40, 3.45) 3.31 × 10-59 0.90 
Obesity 6395 / 21413 2.08 (1.83, 2.36) 4.71 × 10-55 0.27 
Type 2 diabetes 4839 / 23746 1.44 (1.25, 1.67) 1.12 × 10-13 0.95 
Abnormal weight gain 1821 / 21413 1.71 (1.38, 2.13) 1.35 × 10-12 0.44 
Insulin pump user 1570 / 23746 1.67 (1.32, 2.12) 2.45 × 10-11 0.39 
Type 2 diabetes with renal manifestations 1243 / 23746 1.64 (1.26, 2.14) 7.71 × 10-11 0.94 
Overweight, obesity and other hyperalimentation 3237 / 21413 1.44 (1.21, 1.71) 3.13 × 10-09 0.65 
Type 2 diabetes with ophthalmic manifestations 431 / 23746 1.71 (1.12, 2.61) 3.47 × 10-07 0.31 
Diabetic retinopathy 435 / 28318 1.88 (1.23, 2.86) 5.94 × 10-07 0.78 
Secondary diabetes mellitus 653 / 23746 2.06 (1.45, 2.94) 7.33 × 10-06 0.81 
Vitamin deficiency 346 / 23394 2.12 (1.27, 3.54) 9.43 × 10-06 0.84 
Mineral deficiency NEC 459 / 23394 1.67 (1.11, 2.52) 1.19 × 10-05 0.96 
Proteinuria 769 / 28637 1.94 (1.38, 2.73) 2.49 × 10-05 0.49 
Type 2 diabetes with neurological manifestations 1292 / 23746 1.33 (1.03, 1.71) 2.53 × 10-05 0.10 
Other nutritional deficiency 793 / 23394 1.29 (0.94, 1.77) 6.48 × 10-05 0.51 
Vitamin D deficiency 3455 / 23394 1.24 (1.05, 1.47) 7.01 × 10-05 0.68 
Essential hypertension 15966 / 14352 1.31 (1.16, 1.48) 4.47 × 10-12 0.53 
Heart failure with preserved EF [Diastolic HF] 1754 / 25337 1.64 (1.29, 2.08) 9.97 × 10-09 0.46 
Chronic venous insufficiency [CVI] 1347 / 18654 1.78 (1.38, 2.30) 2.32 × 10-07 0.37 
Hypertensive chronic kidney disease 2188 / 14352 1.52 (1.20, 1.93) 4.24 × 10-06 0.39 
Chronic pulmonary heart disease 912 / 27180 1.62 (1.19, 2.21) 5.65 × 10-06 0.25 
Heart failure with reduced EF [Systolic or combined HF] 1759 / 25337 1.41 (1.12, 1.77) 1.18 × 10-05 0.32 
Hypertensive heart and/or renal disease 696 / 14352 1.80 (1.18, 2.74) 2.63 × 10-05 0.55 
Congestive heart failure (CHF) NOS 3151 / 25337 1.27 (1.06, 1.52) 2.95 × 10-05 0.09 
Acute renal failure 3291 / 22810 1.32 (1.11, 1.58) 1.32 × 10-06 0.14 
Other disorders of the kidney and ureters 2501 / 22810 1.35 (1.11, 1.64) 5.90 × 10-06 0.32 
Chronic renal failure [CKD] 2615 / 22810 1.44 (1.18, 1.75) 1.10 × 10-05 0.12 
Chronic Kidney Disease, Stage III 2465 / 22810 1.35 (1.11, 1.64) 1.46 × 10-05 0.36 
Osteoarthrosis NOS 7850 / 18783 1.26 (1.10, 1.44) 4.57 × 10-07 0.77 
Osteoarthrosis, localized, primary 7488 / 18783 1.21 (1.06, 1.38) 2.25 × 10-06 0.59 
Osteoarthritis; localized 1821 / 18783 1.43 (1.13, 1.82) 9.59 × 10-05 0.28 
Bariatric surgery 938 / 32259 3.01 (2.19, 4.14) 3.23 × 10-22 0.89 
Other chronic nonalcoholic liver disease 2186 / 23168 1.28 (1.04, 1.58) 1.51 × 10-05 0.03 
Iron deficiency anemias, unspecified or not due to blood loss 2319 / 21045 1.25 (1.03, 1.53) 7.54 × 10-05 0.52 
Anemia in chronic kidney disease 610 / 21045 1.65 (1.15, 2.36) 1.40 × 10-04 0.19 
Obstructive sleep apnea 3890 / 22296 1.42 (1.22, 1.67) 6.17 × 10-10 0.04 
Sleep apnea 2432 / 22296 1.33 (1.09, 1.61) 3.36 × 10-07 0.10 
Cellulitis and abscess of leg, except foot 1144 / 25161 1.29 (0.98, 1.70) 1.68 × 10-05 0.40 
Complications of cardiac/vascular device, implant, graft 528 / 28449 1.94 (1.30, 2.89) 1.07 × 10-04 0.61 
Edema 3720 / 26266 1.27 (1.08, 1.49) 3.66 × 10-06 0.34 

Odds ratio 
 0       1       2       3      4 

Fig. 5 Phenome-wide associations between obesity PRS and disease outcomes and interactions between obesity PRS and obesity lifestyle risk
index on disease outcomes. Disease outcomes were limited to 40 significant findings from obesity PRS PheWAS. Disease outcomes are color-
coded by their corresponding disease groups as described in the shared legend. PheWAS association models were adjusted for age, sex,
genotyping array, and 5 PCs of ancestry. PheWAS association results are presented as OR (95%) and corresponding P value comparing highest
(Q10) to lowest (Q1 - reference) decile of the obesity PRS. In interaction analyses, an interaction term between the PRS and the index was added
and both the PRS and the index were added as covariates. Pint value are P values for the interaction term between the continuous PRS and
obesity lifestyle risk index. Interactions were considered significant at Pint < 0.00125 accounting for 40 tests. Abbreviations: odds ratio (OR),
phenome-wide association study (PheWAS), polygenic risk score (PRS), quartile (Q)
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ascertainment (height and weight from clinical visits by
clinical staff vs. height and weight from controlled re-
search visits typically by trained research staff according
to standard guidelines) and clinical factors (hospital-
based vs. healthy population-based cohort). The transfer-
ability of genetic findings in EHR biobanks supports the
continued use of rapidly growing EHR biobanks in ad-
vancing obesity research.
Next, we demonstrate interactions between an obesity

PRS and an obesity lifestyle risk index in an EHR bio-
bank, extending findings from healthy adults to patients
with a range of comorbidities [48, 49]. Gene-lifestyle in-
teractions have primarily been conducted in healthy
population-based cohorts [9, 48, 50], which are suscep-
tible to selection bias [51]. Reported interactions include
those between FTO and physical activity in adults where
physical activity attenuated the effects of the FTO effect
allele on obesity from an odds ratio of 1.30 to 1.22 per
effect allele [48]. Similarly, the difference in BMI be-
tween adults who regularly consumed fried foods com-
pared to those that didn’t was 1.0 kg/m2 for women and
0.7 kg/m2 men with high obesity genetic risk, but only
0.5 kg/m2 for women and 0.4 kg/m2 for men with low
genetic risk [50]. In addition, adults with low quality di-
ets had a 1.14 kg/m2 higher BMI per 10-unit increment
in a BMI PRS, compared to only 0.84 kg/m2 higher BMI
among adults with high quality diets [8]. In the present
analysis, we found that among patients with a high index
(more obesogenic behaviors), obesity genetics conferred
a larger effect on BMI compared to patients with a low
index (less obesogenic behaviors). Conversely, a more fa-
vorable lifestyle was associated with an attenuated gen-
etic risk for elevated BMI conferred by the obesity PRS.
The magnitude of the interaction effect reported in the
present study is larger to what has been reported previ-
ously possibly due to the inclusion of additional com-
mon variants for obesity, aggregation of multiple lifestyle
risk factors, or consideration of patients [8, 50]. Worth
noting is that the obesity lifestyle risk index explained a
greater proportion of variance in BMI than the obesity
PRS (6.6% vs. 2.9%, respectively), highlighting the im-
portance of routinely evaluating and monitoring lifestyle
in healthcare settings. As the obesity PRS was not associ-
ated with individual components of the index, high obes-
ity genetic risk does not predispose to the obesogenic
behaviors included in the analysis but possibly to other
lifestyle factors not considered such as diet. The gene-
lifestyle interaction was robust in patients with the low-
est and highest Charlson Comorbidity Index indicating
that targeting obesogenic behaviors may produce
favorable effects regardless of comorbidity burden. Over-
all, these findings add to the growing literature indicat-
ing that genetic predispositions to obesity are not
deterministic, but may be modified by lifestyle [6–9].

Thus, genetic data could be leveraged in a healthcare
setting to prioritize healthy lifestyle strategies in patients
at greatest risk for obesity. As interactions were evident
with multiple obesogenic behaviors independently,
recommending moderate improvements to any, or all,
obesogenic behaviors may be beneficial.
Through the application of PheWAS for the obesity

PRS, we provide an atlas of disease outcomes associated
with obesity genetic risk. Overall, we identified 40 sig-
nals, highlighting the pleiotropic nature of obesity genet-
ics [52, 53]. Associations were consistently positive,
suggesting that obesity genetic risk likely increases risk
for other diseases; however, causality cannot be inferred
from the present analysis. The findings included known
associations with type 2 diabetes and sleep apnea [54,
55]. We also identified novel associations with disease
subphenotypes and other less prevalent diseases [56, 57].
For example, we observed associations between the PRS
with both heart failure with reduced ejection fraction
and heart failure with preserved ejection fraction. In
addition, we identified novel associations with nutri-
tional deficiencies, including vitamin D, iron, and more
commonly, vitamins and minerals. These associations
suggest that higher BMI is associated with decreased
bioavailability of circulating micronutrients, specifically
vitamin D and iron [58–60]. So far, Mendelian
randomization analyses support a link between higher
BMI and lower vitamin D status; causal links with other
micronutrients may exist [58]. These findings emphasize
the importance of examining the nutritional status of
obese individuals, specifically among those with bariatric
surgery, and addressing possible deficiencies through
healthy food choices or supplementation despite likely
excessive dietary intake [61]. The future application of
phenome-wide scans in clinical biobanks may continue
to generate novel hypotheses and advancing translational
research.
In interaction analyses using billing codes, we did not

identify diagnoses where targeting obesogenic behaviors
may attenuate disease risk conferred by obesity genetic
variants. There was no detectable interaction for obesity
diagnosis phecodes despite robust interactions between
the PRS and obesity lifestyle risk index for BMI. The ab-
sence of an interaction for obesity diagnosis may suggest
that the interaction for BMI may be statistically signifi-
cant but clinically modest [62]. Alternatively, the lack of
interaction may highlight general limitations in lever-
aging administrative data for research, including inaccur-
ate and incomplete patient diagnoses contributing to
case misclassification, particularly for obesity [63]. It is
known that limiting obesogenic behaviors, including
physical inactivity, inadequate sleep, and excessive al-
cohol consumption, reduce risk of cancer, diabetes,
and cardiovascular diseases [52, 53, 64]. Thus,
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algorithms combining diagnosis and procedural codes
along with other clinical values may lead to more
precise phenotypic ascertainment.
Several additional limitations should be considered.

The study was restricted to participants of European an-
cestry to limit genetic heterogeneity; future efforts in ra-
cially and ethnically diverse populations are necessary to
allow the generalizability of findings and promote health
equity. The PRS included in the analysis was limited to
97 genetic variants for BMI previously shown to interact
with lifestyle, however, other interactions may exist for a
PRS comprised of additional genetic variants identified
in more recent GWAS [5] or a genome-wide PRS [65].
The optional lifestyle survey responders were generally
more likely to be women and to have a lower 10-year
survival probability than non-responders, and therefore
selection bias may still exist. In addition, the survey was
only administered once at enrollment, and therefore the
stability of these behaviors over time is unknown. Also,
the survey did not account for all known obesogenic be-
haviors, including diet, which has been shown to interact
with obesity genetic risk [8, 50], and did not include data
on other potentially relevant covariates, such as income.
The obesogenic lifestyle risk index was based on crude
lifestyle phenotyping from self-reported data and
weighted according to the associations of lifestyle behav-
iors with BMI, which may not be generalized to other
disease-specific lifestyle risk scores. The most appropri-
ate method for developing global lifestyle risk indices
and assessing their interaction with genetics has yet to
be determined. While our phenome-wide scan is 50%
larger than previous efforts [52], there remain several
rare diseases that were excluded because of inadequate
number of cases and likely limited power. Finally, all
analyses were cross-sectional and should be interpreted
cautiously given that participants were patients who may
have changed their behaviors upon diagnosis and
given that our findings do not indicate that changing be-
haviors according to our obesity lifestyle risk index re-
sulted in improved disease outcomes.

Conclusions
By considering the potential interplay between gene and
lifestyle choices in a clinical biobank, we provide evi-
dence in patients that support both the role of genetic
susceptibility and lifestyle in obesity risk. Moreover, we
show evidence of a significant interaction between gen-
etic and lifestyle risk factors for BMI, suggesting that
emphasizing modifiable lifestyle behaviors to patients
may attenuate risk conferred by common genetic vari-
ants associated with obesity. These findings highlight
non-pharmacological behavior change therapies as po-
tential treatments for a complex disease in a clinical set-
ting. Through phenome-wide scans, we also provide

evidence linking genetic susceptibility to elevated BMI
with diseases spanning multiple categories. Continued
evaluation of the role of lifestyle in the context of gen-
etic predisposition is warranted to support the full po-
tential of personalized medicine.
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